

ASYN/StreamDevice

ASYN/StreamDevice
Support Frameworks

Eric Norum

ASYN/StreamDevice

ASYN

● What is it?
● What does it do?
● How does it do it?
● How do I use it?

ASYN/StreamDevice

What is it?

Asynchronous Driver Support is a general purpose
facility for interfacing device specific code to low
level communication drivers

ASYN/StreamDevice

asyn Architecture

Device support (or SNL code,
another driver, or non-EPICS

software)

device device

Port (named object)

Port driver

addr=0 addr=1

Interfaces (named;
pure virtual functions)

asynCommon
(connect, report, …)

asynOctet (write,
read, setInputEos,…)

ASYN/StreamDevice

Control flow – asynchronous driver

ASYN/StreamDevice

Control flow – synchronous driver

ASYN/StreamDevice

ASYN Components – asynManager

● Provides thread for each communication interface
– All driver code executes in the context of this thread

● Provides connection management
– Driver code reports connect/disconnect events

● Queues requests for work
– Nonblocking – can be called by scan tasks
– User-supplied callback code run in worker-thread context

makes calls to driver
– Driver code executes in a single-threaded synchronous

environment
● Handles registration

– Low level drivers register themselves
– Can ‘interpose’ processing layers

ASYN/StreamDevice

ASYN Components – asynCommon

● A group of methods provided by all drivers:
– Report
– Connect
– Disconnect
– Set option
– Get option

• Options are defined by low-level drivers
• e.g., serial port rate, parity, stop bits, handshaking

ASYN/StreamDevice

ASYN Components – asynOctet

● Driver or interposed processing layer
● Methods provided in addition to those of asynCommon:

– Read
– Write
– Set end-of-string character(s)
– Get end-of-string character(s)

● All that’s needed for serial ports, ‘telnet-style’ TCP/IP devices,
USB-TMC.

● The single-threaded synchronous environment makes driver
development much easier
– No fussing with mutexes
– No need to set up I/O worker threads

ASYN/StreamDevice

ASYN Components – asynGpib

● Methods provided in addition to those of asynOctet:
– Send addressed command string to device
– Send universal command string
– Pulse IFC line
– Set state of REN line
– Report state of SRQ line
– Begin/end serial poll operation

● Interface includes asynCommon and asynOctet methods
– Device support that uses read/write requests can use

asynOctet drivers. Single device support source works with
serial or GPIB.

ASYN/StreamDevice

ASYN Components – asynRecord

● Diagnostics
– Set device support and driver diagnostic message masks
– No more ad-hoc ‘debug’ variables!

● General-purpose I/O
– Replaces synApps serial record and GPIB record

● Provides much of the old ‘GI’ functionality
– Type in command, view reply
– Works with all asyn drivers

● A single record instance provides access to all devices in IOC

ASYN/StreamDevice

asynRecord

● EPICS record that provides
access to most features of asyn,
including standard I/O interfaces

● Applications:
—Control tracing (debugging)
—Connection management
—Perform interactive I/O

● Very useful for testing,
debugging, and actual I/O in
many cases

● If your IOC uses ASYN it
should provide at least one
asynRecord to give clients
control of diagnostic
messages!

ASYN/StreamDevice

asynRecord – asynOctet devices

Interactive I/O to serial device

Configure serial port parameters

Perform GPIB-specific operations

ASYN/StreamDevice

asynRecord – register devices

Same asynRecord, change to ADC port Read ADC at 10Hz with asynInt32 interface

ASYN/StreamDevice

asynRecord – register devices

Same asynRecord, change to DAC port Write DAC with asynFloat64 interface

ASYN/StreamDevice

Tracing and Debugging

• Standard mechanism for printing diagnostic messages
in device support and drivers

• Messages written using EPICS logging facility, can be
sent to stdout, stderr, or to a file

• Device support and drivers call:
– asynPrint(pasynUser, reason, format, ...)
– asynPrintIO(pasynUser, reason, buffer, len,

format, ...)
– Reason:

• ASYN_TRACE_ERROR
• ASYN_TRACEIO_DEVICE
• ASYN_TRACEIO_FILTER
• ASYN_TRACEIO_DRIVER
• ASYN_TRACE_FLOW
• ASYN_TRACE_WARNING

• Tracing is enabled/disabled for (port/addr)
• Trace messages can be turned on/off from iocsh,

vxWorks shell, and from CA clients such as EDM via
asynRecord

• asynOctet I/O from shell

ASYN/StreamDevice

Typical source file arrangement

● Instrument support is placed in
.../modules/instrument/<instrumentname>/Rx.y/

● Each <instrumentname>/Rx.y/ directory contains at least

Makefile

configure/

<InstrumentName>Sup/

documentation/

License

ASYN/StreamDevice

Script to make this a little easier

● mkdir /…/modules/instrument/myinst/head
● cd /…/modules/instrument/myinst/head
● /<path to ASYN support mopdule>/bin/<arch>/makeSupport.pl

 t streamSCPI myinst

Makefile

configure/...

myinstSup/

Makefile devmyinst.db devmyinst.proto

documentation/

devmyinst.html
● A few changes to the latter 3 files and you’re done!
● Notice that there are no C or C++ files.

– Running make just copies the .db and .proto files to the
support module top-level db/ directory.

ASYN/StreamDevice

Introduction to Stream Device

● Generic EPICS device support for devices with “byte stream”
communication.
– RS-232 (Local serial port or LAN/Serial adapter)

– TCP/IP

– VXI-11

– GPIB (Local interface or LAN/GPIB adapter)

– USB-TMC (Test and Measurement Class)

● A single stream device module can serve to communicate using
any of the above communication mechanisms.

ASYN/StreamDevice

Introduction to Stream Device

● Command/reply messages:
– *IDN?

– SET:VOLT 1.2

– Non-ASCII ‘strings’ too

● Command generation and reply parsing configured by protocols

● Formatting and interpretation handled with format converters

– Similar to C printf/scanf format strings

– Custom converters too, but not easy

ASYN/StreamDevice

Stream Device Protocols

● Defined in protocol files
● Plain ASCII text file
● No compiling – IOC reads and interprets protocol file(s) at startup
● Protocols are linear

– No looping

– No conditionals

– Rudimentary exception handlers

● A single entry can read/write multiple fields in one or many records

● Output records can be initialized from instrument at IOC startup

– With one big caveat – instrument must be on and
communicating at IOC startup

ASYN/StreamDevice

StreamDevice EPICS Database
record(bo, "(P)(R)CLS") {
 field(DESC, "SCPI Clear status")
 field(DTYP, "stream")
 field(OUT, "@devmyInst.proto cmd(*CLS) $(PORT) $(A)")
}
record(longin, "(P)(R)GetSTB") {
 field(DESC, "SCPI get status byte")
 field(DTYP, "stream")
 field(INP, "@devmyInst.proto getD(*STB) $(PORT) $(A)")
}

● DTYP=stream
● INP/OUT fields specify protocol file name, protocol entry (with

optional arguments), ASYN port and address.
● Address can be any value (typically 0) for single-address

interfaces.

ASYN/StreamDevice

StreamDevice Protocol File

cmd {
 out "\$1";
}
getD {
 out "\$1?";
 in "%d";
}

● Protocol entries contain statements to produce output and
request input

● C-style escape sequence can be used ('\r', '\n', '\033', '\e')
● Format converters are similar to those used by C printf/scanf

● By default the VAL or RVAL field is used as the data
source/destination

● Can refer to any field, even in another record

ASYN/StreamDevice

StreamDevice Additional Records

record(stringin, "(P)(R)Serial")
{
 field(DESC, "Serial number")
 field(DTYP, "Soft Channel")
}
record(ai, "(P)(R)VP5")
{
 field(DESC, "+5V supply")
 field(DTYP, "Raw Soft Channel")
 field(EGU, "V")
 field(PREC, "3")
 field(LINR, "SLOPE")
 field(ESLO, "1e3")
…
record(longin, "(P)(R)Temp1")
{
 field(DESC, "Sensor 1 temperature")
 field(DTYP, "Soft Channel")

DTYP ≠ stream for protocol entry additional records:

ASYN/StreamDevice

StreamDevice Protocol File

query {
 out "Q";
 in ":"
 "SN=%(\$1Serial.VAL)39[^,],"
 "UN=%(\$1Name.VAL)39[^,],"
 "IP=%*[^,],"
 "V3=%d,"
 "V5=%(\$1VP5.RVAL)d,"
 "V+12=%(\$1VP12.RVAL)d,"
 "V12=%(\$1VM12.RVAL)d,"
 "T1=%(\$1Temp1.VAL)d,"
 …
 "POH=%(\$1HoursOn.VAL)g,"
 "MAXTMP=%(\$1MaxTemp.VAL)g;"
}

Protocol entries can be long – Use multiple lines and string
concatentation to improve readability

Notice the use of the width field – guard against buffer overruns!

ASYN/StreamDevice

StreamDevice Protocol File – Terminators

InTerminator = "\n";
OutTerminator = "\r";

● Terminators can be set globally or per entry.
● Some interfaces can handle only a single character. If device

replies with '\r\n' then specify InTerminator='\n' and ignore the
'\r' in the reply.

ASYN/StreamDevice

StreamDevice Protocol File – Initial Readback

getF {
 out "\$1?";
 in "%f";
}
setF {
 @init { out "\$1?"; in "%f"; }
 out "\$1 %f";
}

● Useful to set initial value of output records to match the value
presently in the instrument.

● @init ‘exception handler’
● Often the same as the corresponding readback prototype entry

record(ao, "(P)(R)IntegrationTime")
{
 field(DESC,"Reading integration time")
 field(DTYP,"stream")
 field(OUT, "@devKeithley6487.proto setF(NPLC) $(PORT) $(A)")

ASYN/StreamDevice

Adding StreamDevice/ASYN instrument
support to an application

● This is easy because the instrument support developers
always follow all the guidelines – right?

● Most of these steps apply to pretty much any support
module, not just StreamDevice/ASYN instruments.

ASYN/StreamDevice

Make some changes to
configure/RELEASE

● Edit the configure/RELEASE file created by makeBaseApp.pl
● Confirm that the EPICS_BASE path is correct
● Add entries for the instruments and ASYN:

DAWN_RUSH =/usr/local/epics/R3.14.12/modules/instrument/DawnRuSH/R1
0
ASYN =/usr/local/epics/R3.14.12/modules/soft/asyn/asynR421
EPICS_BASE=/home/EPICS/base

ASYN/StreamDevice

Modify the application Makefile

⁝
xxx_DBD += base.dbd
xxx_DBD += stream.dbd
xxx_DBD += drvAsynIPPort.dbd

 (and/or drvAsynSerialPort.dbd, drvAsynUSBTMC.dbd, etc.)
xxx_DBD += asyn.dbd
⁝
xxx_LIBS += stream asyn

ASYN/StreamDevice

Modify the application database Makefile

Copy the instrument support database and prototype files to the
application <top>/db/ directory:

⁝
DB_INSTALLS += $(DAWN_RUSH)/db/devDawnRuSH.db
DB_INSTALLS += $(DAWN_RUSH)/db/devDawnRuSH.proto

ASYN/StreamDevice

Modify the application startup script

epicsEnvSet("CRATE_ADDRESS","$(CRATE_ADDRESS=crateapex01:23)")

 (above line is optional, but makes it easy to override for testing)

epicsEnvSet("STREAM_PROTOCOL_PATH","${TOP}/db")

⁝

drvAsynIPPortConfigure("CR0","$(CRATE_ADDRESS) TCP",0,0,0)

⁝

dbLoadRecords("db/devDawnRuSH.db","P=apexCrate:,R=1:,PORT=CR0")

● P,R – PV name prefixes – PV names are (P)(R)name
● PORT– ASYN port name from corresponding devxxxConfigure command

ASYN/StreamDevice

Lab Session
Control ‘network-attached device’

● Host www.xxx.yyy.zzz – TCP Port 24742
● '\n' command terminator, '\r\n' reply terminator
● *IDN?

• Returns device identification string (up to 100 characters)
● LOAD?

• Returns three floating-point numbers separated by spaces
(1, 5, 15 minute load average)

● ON?
• Returns OFF/ON (0/1) status

● VOLTS?
– Returns most recent voltage setting

● CURR?
– Returns current readback (±11A)

ASYN/StreamDevice

Lab Session
Control ‘network-attached device’

● ON [0, 1]
• Turns supply OFF/ON (0/1)

● VOLTS x.xxxx
• Sets voltage (±10V range)

	ASYN Device Support Framework
	ASYN
	What is it?
	asyn Architecture
	Control flow – asynchronous driver
	Control flow – synchronous driver
	ASYN Components – asynManager
	ASYN Components – asynCommon
	ASYN Components – asynOctet
	ASYN Components – asynGpib
	ASYN Components – asynRecord
	asynRecord
	asynRecord – asynOctet devices
	asynRecord – register devices
	Slide 15
	Tracing and Debugging
	Recommended source file arrangement
	There’s a script to make this a little easier
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Make some changes to configure/RELEASE
	Slide 30
	Slide 31
	Modify the application startup script
	Slide 33
	Lab session – Control ‘network-attached device’

